

COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

ccredited by National Board of Accrediation, AICTE, New Delhi, Accredited by NAAC With "A" Grade – 3.32/4.00 CGPA, Recognized Under 2(f) & 12(B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK., Kakinada Seetharampuram, W.G.DT., Narsapur – 534280, (Andhra Pradesh)

DEPARTMENT OF BASIC SCIENCES AND HUMANITIES

TEACHING PLAN

ALCOHOLD WAR	ourse Code	Cour Titl	AND DESCRIPTION OF THE OWNER.	Semester	Branches	Contact Periods /Week	Academ Year	Date of commencem ent of Semester
	20BS1T01 ENGINEERING PHYSICS		MECH EEE, ECE & ROBOTICS		6	2021-2		
COL	JRSE	OUTCOMES	3					Markey.
At th	ne end	of the course	, studen	t will be ab	ole to			y i - 11
	_ 1				ination of crystal		,]	,
2	Expla	in Magnetic a	nd Diele	ctric Mater	ials properties [[K2]		
3	Descr	ibe Concept of	Magnetic	Induction as	nd Super Conduc	cting properties	[K2]	
4					levices for bette			
5		-			perties of mate			[YZO]
	Desci		ocis and	The optical pro	perties of mate	riais and their	applicatio	ns[K2]
UN	NIT	Out Comes / Bloom's Level	Topics No.	Topics/Activity		Text Book / Refere nce	Contact Hour	Delivery Method
the state of	aran i	1 / K2	1.1	Introduction, Space lattice, basis			1	Chalk & Talk, PPT
and a		1 / K2	1.2	Unit cell, parameter	and lattice	T1, R1,	1	Chalk & Talk, PPT
: di]	I	1 / K2	1.3	Crystal Sy	estems	T1, R3,W2	1	PPT, Video presentation
CRY		1 / K2	1.4	Bravais la crystals	ttices- types of	T1, R3, W4	1	PPT, Video presentation
A STR	L	1 / K2	1.5		and packing Simple Cubic	T1, R1	1	Chalk & Talk, PPT
TU:	RE 2.	1/K2 ⁽⁸⁾	1.6	Structures	Structures and packing fraction of Body Centered		1	PPT, Video presentation
	FRA	1 / K2	1.7		and packing face Centered Cu	T1, R2	Ī	Chalk & Talk, PPT
CTI	ON	1 / K2	2.1		and Planes in	T1, R1	1	Chalk & Talk, PPT
		1 / K2	2.2	Miller Ind	ices and procedu	re T1, R1	1	PPT, Video presentation
,	-	1 / K2	2.3		between(h,k,	1) T1, R1, W3	1	PPT, Video presentation

COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

ccredited by National Board of Accrediation, AICTE, New Delhi, Accredited by NAAC With "A" Grade – 3.32/4.00 CGPA, Recognized Under 2(f) & 12(B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK., Kakinada Seetharampuram, W.G.DT., Narsapur – 534280, (Andhra Pradesh)

	1 / K2	2.4	Bragg's law- Bragg's Spectrometer	TI, RI	1	PPT, Video presentation
Content beyond Syllabus	1 / K2	2.5	Powder method	T1, R1, W4	1	PPT, Video presentation
o, mono				Total		12
	2 / K2	3.1	Introduction, Basic definitions	T1, R2, W1	1	PPT, Video presentation
. " 1	2 / K2	3.2	Origin of magnetic moment	T1, R3	1	Chalk & Talk, PPT
15		3.3	Classification of Magnetic	Ti, Ri	1	
1131	2 / K2		materials: Dia, Para and Ferro Magnetism Anti-Ferro and Ferrimagnetism			Chalk & Talk, PPT
II 3.MAGN	2 / K2	3.4	Classification of Magnetic materials: Anti-Ferro and Ferrimagnetism	TI, RI	1	Chalk & Talk, PPT
PROPER	2 / K2	3.5	Hysteresis Loop of ferromagnetic material	T1, R1, W5	1	PPT, Video presentation
TIES & 4.DIELE CTRIC	2 / K2	3.6	Soft and Hard Magnetic materials Problems	T1, R1, W5	1	PPT, Video presentation
PROPER TIES	2 / K2	4.1	Introduction, Dielectric constant	T1, R1	1	Chalk & Talk, PPT
TIES	2 / K2	4.2	Electronic Polarizations	T1, R1	1	Chalk & Talk, PP7
A PA	2 / K2	4.3	Ionic and Orientational (Qualitative) Polarizations	T1, R2, W4	1	PPT, Video presentation
ny A	2/K2	4.4	Internal fields in Solids,	T1, R3	1	Chalk & Talk, PP7
era e	2 / K2	4.5	Clausisus-Mosotti equation Problems	T1, R1	1	Chalk & Talk, PPT
Content beyond Syllabus	2 / K2	4.6	Weiss Domain theory of ferromagnetism	T1, R1, W10	1	PPT, Video presentation
Y-				Total		12
* * 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d 1 d	3 / K2	5.1	Introduction, Electric & Magnetic Flux	T1, R1, W1	1	PPT, Video presentation
-	3 / K2	5.2	Gauss's Law in Electrostatics & Magneto statics	T _{1,} R2	1	Chalk & Talk, PP7
III 5.ELECT	3 / K2	5.3	Ampere's Law- B for a Solenoid	T _{1,} R2	1	Chalk & Talk, PPT
ROMAG NETIC WAVES	3 / K2	5.4	Biot-Savart's Law- Magnetic Induction due to current carrying circular loop	T1 R2, W3	1	PPT, Video presentation
	3 / K2	5.5	Faraday's Law of induction	T1, R1	1	Chalk & Talk, PPT
	3 / K2	5.6	Maxwell's Equations- Differential forms and Integral forms	T ₁ , R1	1	Chalk & Talk, PPT
	1.1			Total		6
		MIDIE	EXAMINATION DURING SEVEN	TH WEEK	, .	

VISION CONDUCT

SWARNANDHRA

COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

ccredited by National Board of Accrediation, AICTE, New Delhi, Accredited by NAAC With "A" Grade – 3.32/4.00 CGPA, Recognized Under 2(f) & 12(B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK., Kakinada

Seetharampuram, W.G.DT., Narsapur - 534280, (Andhra Pradesh)

	3 / K2	6.1	Introduction-,T _C ,H _C ,I _C		1	Challe 0 T H DDT
	3 / K2	- 0.1	General properties	T1, T2	1	Chalk & Talk, PPT
	3 / K2	6.2	Meissner Effect- Type I and	T1, R1	1	
III	3 / K2		Type II Superconductors		1	Chalk & Talk, PPT
6.SUPER CONDUC	3 / K2	6.3	Flux quantization ,BCS Theory of Superconductivity	T1,T2	1	Chalk & Talk, PPT
TIVITY	3 / K2	6.4	Josephson effects	T1, R3, W4	1	PPT, Video
	3 / K2	6.5	Applications of Superconductivity	T1,R2	1	Chalk & Talk, PPT
Content beyond Syllabus	3 / K2	6.6	Penetration Depth	T1, R1, W4	1	PPT, Video presentation
			-1	Total		6
	4 / K2	7.1	Introduction	T1, R1	1	Chalk & Talk, PPT
<u> </u>	4 / K2	7.2	Intrinsic Semiconductor Carries concentration of electrons	T1, R3	1	Chalk & Talk, PPT
IV	4 / K2	7.3	Carries concentration of holes	T1, R3	1	Chalk & Talk, PPT
14	4 / K2	7.4	Equation for conductivity	T1, R1	1	Chalk & Talk, PPT
SEMICO	4 / K2	7.5	Extrinsic semiconductor n-type Carries concentration	T1, R2, W4	1	PPT, Video
NDUCTO	4 / K2	7.6	p-type Carries concentration	T1, R2	1	Chalk & Talk, PPT
R PHYSICS	4 / K2	7.7	Drift and Diffusion coefficients- Einstein's equation	T1, R1, W4	1	PPT, Video presentation
-	4 / K2	7.8	Hall effect and its applications	T1, R1, W5	1	PPT, Video
- vali	4/K2	7.9	Problems	T1, R3,	1	PPT, Video presentation
Content beyond Syllabus	4 / K2	7.10	p-n diode, zener diode	T2, R2, W1	1	PPT, Video presentation
		17:17	N.	Total		10
-,	5 / K2	8.1	Introduction, characteristics of lasers,	T1,T2	1	Chalk & Talk, PPT
V	5 / K2	8.2	Stimulated absorption, Spontaneous emission, and Stimulated emission	T1, R1	1	Chalk & Talk, PPT
	5 / K2	8.3	Einstein Coefficients and their relation	T1, R2, W4	1	PPT, Video presentation
8. LASERS	5 / K2	8.4	Population Inversion and Different types of Pumping schemes	T1, R2	1	Chalk & Talk, PPT
% 9.OPTIC AL	5 / K2	8.5	Important components of Laser, Three and Four level pumping schemes	T1,R3, W4	1	PPT, Video presentation
FIBERS	5 / K2	8.6	Ruby Laser	T1,R2, W2	1	PPT, Video presentation
	5 / K2	8.7	He-Ne Laser, Applications of Lasers	T1,R2,	1	PPT, Video presentation

COLLEGE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

ccredited by National Board of Accrediation, AICTE, New Delhi, Accredited by NAAC With "A" Grade – 3.32/4.00 CGPA, Recognized Under 2(f) & 12(B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK., Kakinada Seetharampuram, W.G.DT., Narsapur – 534280, (Andhra Pradesh)

				W5				
	5 / K2	9.1	Introduction to Optical fibers	T1,R2	1	Chalk & Talk, PPT		
	5/K2	9.2	Critical angle of propagation Total internal reflection	T1,R3	1	Chalk & Talk, PPT		
	5 / K2	9.3	Acceptance angle, acceptance cone and Numerical aperture	T1,R3	1	Chalk & Talk, PPT		
pr ·	5 / K2	9.4	Classification of optical fibers based on refractive index profile	T1, R1, W4	1	PPT, Video presentation		
	5 / K2	9.5	Classification of optical fibers based on modes	T1, R2	1	Chalk & Talk, PPT		
	5 / K2	9.6	Attenuation in optical fibers and Applications of optical fibers	T1, R3, W4	1	PPT, Video presentation		
Content beyond Syllabus	5 / K2	9.7	Semiconductor Laser	T1, R3, W5	1	PPT, Video presentation		
				Total		14		
		CUN	MULATIVE PROPOSED PE	RIODS		60		
<u> </u>	1	MID II EX	AMINATION DURING FOURTE	ENTH WE	EK			
			END EXAMINATIONS					
Text Bo								
S. No.	AUTHORS, BO	OOK TIT	LE, EDITION, PUBLISHER, Y	EAR OF	PUBLIC	CATION		
1.	M. N. Avadhar	ıulu, P. C	3. Kshirasagar & TVS Arun Mu	rthy, A Te	xt Book	of Engineering		
	Physics, 11th E	Edition, S	. Chand publications, 2019.					
-			Reference Books:					
S. No.	AUTHORS, BO	OOK TIT	LE, EDITION, PUBLISHER, Y	EAR OF	PUBLIC	CATION		
1.	Charles Kittel;	Introduc	tion to solid state physics, 8th Ed	lition, Johr	Wiley	& Sons,Inc,		
2.	S.O. Pillai; Solid state physics, New Age International, 2010							
3.	Shatendra Sharma and Jyotsna Sharma; Engineering Physics, Pearson Education, 2018							
4.	P. K. Palanisamy; Engineering Physics, SciTech Publishers, 2018							
5.	D. Thirupathi N	laidu and	M. Veeranjaneyulu; Engineerin	ng Physics	, VGS P	ublishers,2013		
			Web Source References:					
1.	www.nptel.edu.in							
2.	www.ocw.mit.edu							
3.	www.vlab.co.in							
4.	NPTEL videos							
5.	Booksc.org	,	2 41 (1.74%)					

COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

ccredited by National Board of Accrediation, AICTE, New Delhi, Accredited by NAAC With "A" Grade – 3.32/4.00 CGPA, Recognized Under 2(f) & 12(B) of UGC Act 1956 Approved by AICTE, New Delhi, Permanent Affiliation to JNTUK., Kakinada Seetharampuram, W.G.DT., Narsapur – 534280, (Andhra Pradesh)

		Name	Signature with Date
i.	Faculty I (for common Course)	Dr. N.G. Praveena	QP -D-
ii.	Faculty II (for common Course)	Mr. K. Koteswara rao	K. Kot enty
iii.	Faculty III (for common Course)	Mr. A. Satish	A Salith
iv.	Course Coordinator	Dr. V. Swaminadham	V. Ivaminas
v.	Module Coordinator	Not Applicable	
vi.	Programme Coordinator	Dr. V. Swaminadham	V. /wanning odh

Principal

College of Engineering & Technology (Autonomous)
NARSAPUR - 534 280

DEPARTMENT OF BASIC SCIENCES AND HUMANITIES

LAB LESSON PLAN

Course Code	Course Name	Regulation	Academie year	Year / Semester	Branches	Contact Periods/Week	Sections
20BS1L01	Engineering Physics Lab	R-20	2021- 2022	I B.Tech / I Sem	Common to EEE, ECE, MECH & ROBOTICS	3	

COURSE OUTCOMES

At the end of the course, student will be able to

CO1: Demonstrate the basic knowledge to know the frequency of a vibrator, hall coefficient. (K3)

CO2: Attain knowledge to verify some of the properties of physical optics. (K4)

CO3: Develop skills to plot various characteristic curves and to calculate the physical Properties of given materials. (K4)

CO4: Calculate some of the properties of semiconducting materials. (K2)

WEEK	COURSE OUTCOMES	EXPT NO	DESCRIPTION	NO. OF SESSIONS
	CO1:	1	Determine frequency of A.C. supply by using Sonometer	1
1,2	Demonstrate basic knowledge to know the frequency of a vibrator, hall coefficient	2	Determine Frequency of given electrically driven tuning fork in Transverse and Longitudinal modes by using Melde's apparatus	1
245	CO2: Attain knowledge	3	Determine Planck's constant by using photo cell	1
3,4,5	to verify some of the properties of physical optics	4	Determine the wavelength of Laser using diffraction grating	1

P	5	Determination of Numerical Aperture and Acceptance angle of an Optical Fiber	1	
P	5	Determination of Numerical Aperture and Acceptance angle of an Optical Fiber	1	

WEEK	COURSE OUTCOMES	EXPT NO	DESCRIPTION	NO. OF SESSIONS
	CO3.	6	Determine temperature coefficient of a given Thermistor by using its characteristic curves	1
6,7,8,9	Develop skills to plot various characteristic curves and to	7	Study the variation of Intensity of Magnetic Field along the axis of a circular coil carrying current by using Stewart-Gee's Apparatus	1
	calculate the physical properties of given materials	8	Determine Time constant of a C-R circuit	1
		9	Draw V-I characteristics of a Zener diode in forward and reverse bias. And also find its breakdown voltage	1
10	CO4. Calculate some of the properties of semiconducting materials	10	Determine the energy band gap of a given semiconducting material by using p-n junction diode	1

U. Iwami was Course Coordinator

NA Module Coordinator V. Warrings

Principal